TEST DI AMMISSIONE
AD INGEGNERIA

Test di AutoValutazione N. 2
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INGLESE</td>
</tr>
<tr>
<td>2</td>
<td>LOGICA, MATEMATICA, STATISTICA</td>
</tr>
<tr>
<td>3</td>
<td>COMPRENSIONE VERBALE</td>
</tr>
<tr>
<td>4</td>
<td>FISICA</td>
</tr>
</tbody>
</table>
1 INGLESE

Ogni quesito di Inglese è una frase seguita da 5 risposte. Lo studente scelga la risposta che, inserita nella frase al posto della linea continua, la completa correttamente.
Fra le risposte potrebbe apparire una linea tratteggiata. Lo studente scelga tale opzione nel caso in cui ritenga la frase già completa.

1. “This year we only have one week’s holiday for Christmas.” - “What ______?”
 A. do you do
 B. you do
 C. will you doing
 D. you are doing
 E. are you doing

2. “______ your brother like?” - “He’s a very nice person but shy.”
 A. What does
 B. What
 C. What’s
 D. What would
 E. What will

3. Look at those black clouds! I think ______ this evening.
 A. it’s raining
 B. it’s going to rain
 C. it rains
 D. it would rain
 E. it has to rain
4. Can you see ______ books in that corner?
 A. these
 B. those
 C. them
 D. this
 E. there

5. Have you ______ eaten kangaroo meat?
 A. yet
 B. before
 C. never
 D. ever
 E. still

6. Have you got ______ brothers or sisters?
 A. some
 B. any
 C. a
 D. the
 E. of

7. This is the living room and this is the ______
 A. girls’ bedroom
 B. bedroom girl’s
 C. girls bedroom’s
 D. bedrooms’ girls
 E. girl’s bedrooms
8. Jill, are you hungry? ______ you like something to eat?
 A. Could
 B. Will
 C. Do
 D. Would
 E. Should

9. There’s a new colleague at work. She’s nice but ______ talking.
 A. never she stops
 B. she stops never
 C. she never stops
 D. she doesn’t never stop
 E. never she doesn’t

10. Look at the photo. This is my ______ cottage in Wales.
 A. parent’s
 B. parentes’
 C. parents
 D. parents’s
 E. parents’

11. I drank a cold Coke ______ it was too hot.
 A. but
 B. so
 C. and
 D. why
 E. because
12. When you work in a hospital, do you ______ wear a uniform?

A. have got
B. must
C. should
D. have
E. have to

13. I told ______ my mother to go out of my room.

A. to
B. at
C. - - - -
D. with
E. for

14. Where ______ from? Jamaica?

A. come you
B. do you
C. you come
D. are you
E. comes you

15. Paul ______ speak quite a few words when he was only twelve months.

A. can
B. can’t
C. could
D. is able to
E. may
16. We are flying to Argentina next week ______ a tango course in Buenos Aires.

 A. for doing
 B. to do
 C. for to do
 D. for to doing
 E. to doing

17. I can’t use my computer because it ______ by a virus.

 A. has affected
 B. affected
 C. is affected
 D. affects
 E. is affecting

18. A lot of milk ______ in the USA.

 A. has drunk
 B. is drinking
 C. drinks
 D. is drunk
 E. was drinking

19. The bank is ______ the corner of West Street and North Road.

 A. in
 B. of
 C. between
 D. next
 E. on
20. We can’t play squash at five o’clock. ______ the new manager.
 A. I shall to see
 B. I’m seeing
 C. I’m going see
 D. I will seeing
 E. I will be see

21. ______ for breakfast.
 A. Often he eats bacon and eggs
 B. He eats often bacon and eggs
 C. He often eats bacon and eggs
 D. He eats bacon and eggs often
 E. Often eats he bacon and eggs

22. “Do they read novels?” - “Yes they ______. They’ve lots at home.”
 A. read
 B. are
 C. have
 D. do
 E. like

23. This park is quite old. ______ trees were planted 100 years ago.
 A. Its
 B. Their
 C. Every
 D. Any
 E. Lots
24. The first plane ______ on 17th December 1903.
 A. flyed
 B. flied
 C. flew
 D. flown
 E. flow

 A. Pleased!
 B. What do you do?
 C. Nice to meet you!
 D. How does it go?
 E. Very happy!

26. “Consuelo and Carlos speak French very well. Do they live in France?”
 - “No, they ______. They go to France every Summer.”
 A. haven’t
 B. don’t live
 C. aren’t
 D. don’t
 E. live not

27. “What’s this?” - “It’s _____ Australian surfing board.”
 A. the
 B. an
 C. ----
 D. a
 E. there
28. ______ does it take to get to the airport from the station?
 A. How long
 B. How much
 C. How far
 D. How time
 E. How often

29. I’m going to the cinema with Mike tonight. Would you like ______ with us?
 A. to come
 B. coming
 C. come
 D. to coming
 E. you come

30. Sheila is the girl ______ brown hair.
 A. has
 B. of
 C. with
 D. the
 E. ’s got
2 LOGICA, MATEMATICA, STATISTICA

31. Giocando a Risiko, Giulio Cesare ha vinto più di suo nipote Augusto, ma non di Napoleone. Alessandro Magno ha vinto meno di Carlo Magno, ma più di Napoleone. Chi ha vinto di meno?

A. Giulio Cesare
B. Augusto
C. Alessandro Magno
D. Napoleone
E. Carlo Magno

32. La scomposizione in fattori primi del numero 30^13 è

A. impossibile
B. 2^{15} \cdot 3^{12} \cdot 7^{13}
C. 2^{13} \cdot 3^{13} \cdot 5^{13}
D. 30^{13}
E. 5^{13} \cdot 6^{13}

33. L’equazione nell’incognita reale x

\[x^4 + 3x^2 - 4 = 0 \]

ha

A. due soluzioni positive e due soluzioni negative
B. due soluzioni positive e nessuna soluzione negativa
C. due soluzioni negative e nessuna soluzione positiva
D. una soluzione positiva e una soluzione negativa
E. nessuna soluzione
34. Nel piano cartesiano ortogonale Oxy il raggio della circonferenza di equazione
\[\sqrt{3}x^2 + \sqrt{3}y^2 - 2x - 2y = 0 \]
e è
A. 1
B. 2
C. 3
D. $\sqrt{2/3}$
E. $\sqrt{3}$

35. L’espressione
\[\left(\sin \frac{\pi}{12} - \cos \frac{\pi}{12} \right)^2 \]
e anche uguale a
A. $1/2$
B. 1
C. $1 - \sqrt{3}/2$
D. $3/2$
E. $1 - \sqrt{2}/2$

36. Aldo, Bruno, Carlo, Dario, Eva e Fabio vanno in treno e trovano uno scompartimento a 6 posti libero. Dato che Eva e Fabio vogliono stare vicino al finestrino, quanti modi diversi hanno i sei amici di occupare i posti nello scompartimento?
A. 10
B. 48
C. 240
D. 8
E. 4
37. L’affermazione

Su ogni tavolo ci sono bicchieri

è falsa. Allora è vero che

A. c’è un tavolo senza bicchieri
B. ci sono tavoli con due o più bicchieri
C. ogni tavolo è senza bicchieri
D. c’è un tavolo con una bottiglia
E. su tutti i tavoli c’è qualcosa ma non necessariamente bicchieri

38. L’anno scorso uno studente universitario ha dato 5 esami ottenendo una media di 24; nei 3 esami che ha dato quest’anno ha invece riportato una media di 28. In totale, negli 8 esami sostenuti la sua media è

A. 28
B. 25
C. 26
D. 25, 5
E. 26, 5

39. L’equazione

\[\sqrt{x^2} - x = 0 \]

A. è verificata per ogni valore reale di x
B. ha solo la soluzione x = 0
C. ha solo la soluzione x = 1
D. non ha soluzioni reali
E. è verificata per ogni \(x \geq 0 \)
40. Per numerare le pagine di un libro sono state usate in totale 3300 cifre. Le pagine del libro sono

A. tra 1000 e 1500
B. più di 3000
C. tra 1500 e 2000
D. meno di 1000
E. tra 2000 e 3000

41. Il numero

\[\log_7 140 \]

A. è uguale a \(7 \log_7 20 \)
B. è uguale a 20
C. è maggiore di 3, ma minore di 7
D. è maggiore di 7
E. è uguale a \(1 + \log_7 20 \)

42. Un numero razionale compreso fra \(\sqrt{5} \) e \(\sqrt{8} \) è

A. \((\sqrt{5} \cdot \sqrt{8}) / 2 \)
B. 3,01
C. 2,52
D. 1,98
E. \((\sqrt{5} + \sqrt{8}) / 2 \)
43. Un triangolo equilatero è inscritto in una circonferenza. Il rapporto fra la lunghezza della circonferenza e il perimetro del triangolo è

A. $\sqrt{3}\pi/2$
B. $2\sqrt{3}\pi/9$
C. $2\pi/\sqrt{3}$
D. $\pi/3$
E. $4\pi/3$

44. Di una famiglia si sa che

(a) almeno un maschio non è celibe
(b) tutti i laureati sono celibi
(c) tutti i maschi sono maggiorenni

Solo una delle seguenti proposizioni è deducibile dalle premesse. Quale?

A. Almeno un maggiorenne non è coniugato
B. Nessun maggiorenne non è coniugato
C. Almeno un celibe non è maggiorenne
D. Almeno un maggiorenne è coniugato
E. Tutti i celibi sono laureati

45. Sia a un numero reale positivo. Allora l’espressione

$$\sqrt[7/2]{a^2 \sqrt{a}}$$

è uguale a

A. $a^{-1/2}$
B. $a^{-7/2}$
C. a^{-2}
D. $1/a$
E. 1
46. Nel piano cartesiano ortogonale Oxy consideriamo i punti $A = (1, 0)$ e $B = (0, 2)$. Per quale scelta del punto C il triangolo ABC non è rettangolo?

A. $C = (1, 2)$
B. $C = (-4, 0)$
C. $C = (0, 0)$
D. $C = (-1, 0)$
E. $C = (0, -1/2)$

47. La disequazione

$$(1, 5)^x < \frac{1}{1, 5}$$

è verificata per

A. nessun valore reale di x
B. $x < -1$
C. $x > -1$
D. $x < 0$
E. $x < 1$

48. Degli iscritti ad un corso di judo 45 sono principianti e il 40% sono esperti. Quanti sono in tutto gli iscritti?

A. 180
B. 90
C. 75
D. 120
E. 85
49. Sia α la misura in radianti di un angolo acuto. Da $\sin \alpha = 0,8$ si deduce che

A. $\sin 2\alpha = 0,96$
B. $\sin 2\alpha = 1,6$
C. $\cos \alpha$ è un numero irrazionale
D. α è minore di $\pi/6$
E. $\tan \alpha$ è minore di 1

50. Una famosa congettura afferma che

i numeri primi q tali che $q + 2$ è un numero primo sono infiniti

Confutare questa affermazione equivale a provare che

A. per ogni intero positivo n esiste un numero primo q con $q > n$ tale che il numero $q + 2$ non è primo
B. esiste un intero positivo n tale che, per ogni numero (primo e non primo) m con $m > n$, il numero $m + 2$ non è primo
C. esistono un intero positivo n e un numero primo q con $q > n$ tali che il numero $q + 2$ non è primo
D. per ogni intero positivo n e per ogni numero primo q con $q > n$ il numero $q + 2$ non è primo
E. esiste un intero positivo n tale che, qualunque sia il numero primo q con $q > n$, il numero $q + 2$ non è primo

51. Il liquido che riempie una sfera di raggio K viene travasato in cilindri aventi diametro di base K ed altezza K. Qual è il numero minimo di cilindri che occorrono per compiere questa operazione?

A. 4
B. 5
C. 6
D. 3
E. 9
52. La disequazione

$$\cos^2 x - \cos x - 2 \geq 0$$

è verificata per

A. qualunque valore reale di x
B. $x = 3k\pi$ per ogni k intero
C. nessun valore reale di x
D. $x = (2k + 1)\pi$ per ogni k intero
E. $x = 2k\pi$ per ogni k intero

53. Dato un esagono regolare di lato L, l’area del rettangolo avente due lati opposti coincidenti con due lati paralleli dell’esagono è uguale a

A. $\sqrt{3}L^2$
B. quella del cerchio inscritto nell’esagono
C. $2\sqrt{2}L^2$
D. quella del cerchio circoscritto all’esagono
E. $2L^2$

54. L’equazione nell’incognita reale x

$$|x - 1| = 1 - |x|$$

ha

A. infinite soluzioni
B. nessuna soluzione
C. esattamente due soluzioni
D. esattamente tre soluzioni
E. esattamente quattro soluzioni
55. Nel piano cartesiano ortogonale Oxy l’equazione dell’asse del segmento di estremi $(0, 0)$ e $(2, 2)$ è

A. $x = 1$
B. $y = 1$
C. $x - y = 2$
D. $y = x$
E. $x + y = 2$
3 COMPRENSIONE VERBALE

Il criterio di demarcazione inerente alla logica induttiva — cioè il dogma positivistico del significato — è equivalente alla richiesta che tutte le affermazioni della scienza empirica (ovvero tutte le affermazioni significanti) debbano essere passibili di una decisione conclusiva riguardo alla loro verità e falsità; diremo che devono essere decidebili in modo conclusivo. Ciò significa che la loro forma deve essere tale che sia il verificare sia il falsificare debbano essere logicamente possibili. Così Schlick dice: “...un’affermazione autentica deve essere possibile di verificazione conclusiva”; e Waismann afferma ancor più chiaramente: “...se non è in alcun modo possibile determinare se un’affermazione è vera, allora l’affermazione non ha alcun significato”. Infatti il significato di un’affermazione è il metodo della sua verificazione. Ora, secondo me, non esiste nulla di simile all’induzione. È pertanto logicamente inammissibile l’inferenza da affermazioni verifiche dall’esperienza (qualunque cosa ciò possa significare) a teorie. Dunque le teorie non sono mai verificabili empiricamente. Se vogliamo evitare l’errore positivistico, consistente nell’e-liminare per mezzo del nostro criterio di demarcazione i sistemi di teorie delle scienze della natura, dobbiamo scegliere un criterio che ci consenta di ammettere, nel dominio della scienza empirica, anche affermazioni che non possono essere verificate. Ma io ammetterò certamente come empirico, o scientifico, soltanto un sistema che possa essere controllato dall’esperienza. Queste considerazioni suggeriscono che, come criterio di demarcazione, non si deve prendere la verificabilità, ma la falsificabilità di un sistema. In altre parole: da un sistema scientifico non esigerò che sia capace di essere scelto, in senso positivo, una volta per tutte; ma esigerò che la sua forma logica sia tale che possa essere messo in evidenza, per mezzo di controlli empirici, in senso negativo; un sistema empirico deve poter essere confutato dall’esperienza. (Così l’affermazione “Domani pioverà o non pioverà” non sarà considerata un’affermazione empirica, semplicemente perché non può essere confutata, mentre l’affermazione “Qui domani pioverà” sarà considerata empirica). Contro il criterio di demarcazione che ho proposto qui si possono sollevare diverse obiezioni. In primo luogo può sembrare piuttosto sciocco il suggerire che la scienza, la quale dovrebbe darci informazioni positive, si debba caratterizzare dicendo che soddisfa un criterio negativo, come la
confutabilità. Ancora: si potrebbe tentare di rivolgere contro me stesso le critiche che ho rivolto al criterio di demarcazione induttivistico: potrebbe infatti sembrare che contro la falsificabilità come criterio di demarcazione sia possibile sollevare critiche simili a quelle che io, per parte mia, ho sollevato contro la verificabilità. Questo attacco non può darmi noia. La mia proposta si basa su una asimmetria tra verificabilità e falsificabilità, asimmetria che risulta dalla forma logica delle asserzioni universali. Queste infatti non possono mai essere derivate da asserzioni singolari. Di conseguenza è possibile, per mezzo di inferenze puramente deduttive (con l’aiuto del *modus tollens* della logica classica), concludere dalla verità di asserzioni singolari alla falsità di asserzioni universali. Un tale ragionamento, che conclude alla falsità di asserzioni universali, è il solo tipo di inferenza strettamente deduttiva che proceda, per così dire, nella direzione induttiva; cioè da asserzioni singolari ad asserzioni universali.

56. L’errore dell’induzione sta

A. nella negazione dell’esperienza
B. nel trascurare la verificazione
C. nell’accettare verità astratte
D. nella pretesa di passare da asserti particolari a teorie universali
E. in una eccessiva fiducia nella logica

57. Da asserzioni particolari

A. si può per inferenza induttiva convalidare una teoria
B. non si possono ottenere informazioni
C. non si possono conoscere nuovi fenomeni
D. si può per inferenza deduttiva stabilire la falsità di asserti universali
E. si può costruire una nuova teoria
58. L’affermazione “domani pioverà o non pioverà” è infalsificabile perché
 A. è sicuramente falsa
 B. è vera in ogni caso
 C. non ha basi attendibili
 D. la meteorologia non è una scienza esatta
 E. la scienza non prevede fatti singoli

59. Il criterio di demarcazione serve per distinguere
 A. verità e falsità di ogni tipo di asserzione
 B. le teorie scientifiche da quelle non scientifiche
 C. gli empiristi dai razionalisti
 D. il particolare dall’universale
 E. la scienza e la metafisica

60. Il vero criterio di demarcazione
 A. è la falsificabilità
 B. è la verificabilità empirica
 C. deriva da esperimenti ripetuti
 D. deriva da constatazioni particolari
 E. ha una base esclusivamente universale
4 FISICA

61. La legge oraria \(s(t) \) di un moto rettilineo, illustrata nel piano cartesiano \(Ots \) da un ramo di parabola con concavità verso l’alto, indica

A. un moto con velocità costante
B. un moto ad accelerazione costante
C. un moto ad accelerazione uniformemente crescente
D. un moto con velocità positiva
E. un moto con velocità decrescente

62. Una quantità di carica \(Q \) viene depositata su un conduttore isolato costituito da una sfera piena dotata di una cavità sferica al suo interno. In condizioni statiche la carica

A. si distribuirà uniformemente sulla superficie esterna della sfera
B. si distribuirà uniformemente sulla superficie interna della cavità
C. si distribuirà uniformemente nel volume del metallo
D. si distribuirà sulle due superfici interna ed esterna, proporzionalmente alla loro superficie
E. non rimane sul conduttore ma viene immediatamente dispersa nell’atmosfera per effetto “corona”

63. Indicare come cambiano la velocità \(v \) e la lunghezza d’onda \(\lambda \) della luce quando questa passa dall’aria al vetro.

A. \(v \) aumenta e \(\lambda \) diminuisce
B. \(v \) diminuisce e \(\lambda \) diminuisce
C. \(v \) aumenta e \(\lambda \) aumenta
D. \(v \) diminuisce e \(\lambda \) aumenta
E. \(v \) aumenta e \(\lambda \) non cambia
64. Tra le unità di misura sottoelencate solo una non riguarda il lavoro. Quale?

A. joule
B. erg
C. kilowattora
D. kilogrammetro
E. newton

65. Un palloncino di gomma viene prima gonfiato alla temperatura di 22°C, poi sigillato e infine messo in un frigorifero alla temperatura di 2°C. Quale fenomeno si verificherà?

A. Il palloncino scoppia
B. Il palloncino rimane inalterato
C. Il volume del palloncino diminuisce
D. Il palloncino aumenta di volume, ma non scoppia
E. Si ha una fuoruscita di aria